Energy Science Laboratories, Inc. Materials & Processing **ESLI**

Levitation of a Small Carbon Sail by Visible Radiation in Rarified Atmosphere

NASA/JPL/MSFC/UAH 12th Annual Advanced Space Propulsion Workshop

April 4, 2001

T. R. Knowles, M.G. Carpenter, P. H. Lieu, *Energy Science Laboratories Inc.*H. M. Harris, *Jet Propulsion Laboratory*

Apr-01

Energy Science Laboratories, Inc. Materials & Processing

ESLI

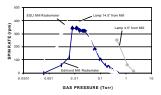
Contents

- Crookes Mill 'Radiometer'
- Carbon Sails
- Pendulum Tests
- Vertical Flight Demo
- Applications
- Plans

Apr-01

2

Energy Science Laboratories, Inc. Materials & Processing **ESLI**


3

Crookes Mill 'Radiometer'

- Thermally driven
 - Cold gas molecules exchange heat and momentum with radiantly heated vane
 - Continuous thrust requires mfp ~ or > vane size
- Rotation rate is maximal for P~1 Pa
 - Decreases at higher pressure because boundary layer forms halting momentum exchange
 - Decreases at lower pressure because fewer molecules act

Mill Radiometer Frequency vs Pressure

Apr-01

Energy Science Laboratories, Inc. Materials & Processing **ESLI**

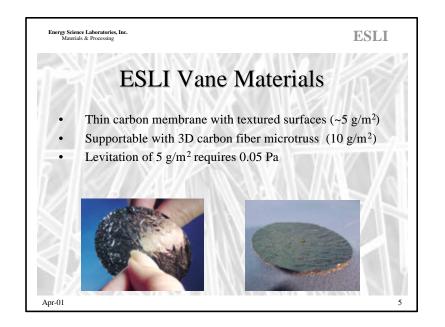
'Radiometer' Gas-Kinetic Pressure

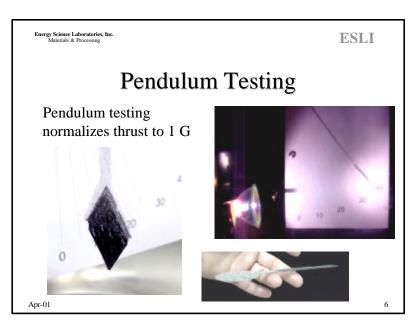
• Consider 85-km altitude

$$-P \sim 1 Pa$$

$$- T \sim 200 K$$

• Use radiation sufficient to maintain ΔT~100 K


• Supports a 12-g/m² sail against gravity


$$\Delta P_{\text{gar-leaves:}} = P_0(\phi_t - \phi_z) = P_{\text{obs}} \frac{\rho}{\rho_{\text{obs}}} (\phi_t - \phi_z)$$

$$\phi_i = \frac{\alpha_{p,i}}{2} \left[\left(\frac{T_i}{T_0} \right)^{1/2} - 1 \right]$$

Pa	1.01E+05
-	1.00E-05
K	200
-	0.8
-	0.2
K	350
K	250
-	0.129
-	0.012
Pa	0.12
g/m ²	12.1
	К К К

Apr-01 4

Energy Science Laboratories, Inc.
Materials & Processing

ESLI

Levitation Demonstration

Have observed levitation of 5-g/m² carbon sail with incandescent lamp up to 300 W with pressure throughout 0.2 - 20 Pa

Apr-01

Energy Science Laboratories, Inc. Materials & Processing **ESLI**

Desired Improvements

- Develop higher performance materials and power conditioning
- High coupling coefficient $\sim N/kW$
- More thrust at higher pressure
 - Net lift at lower altitude in Earth atmosphere
 - Net lift at the surface of Mars (~500 Pa CO₂)
- Reverse thrust, pulling toward the source

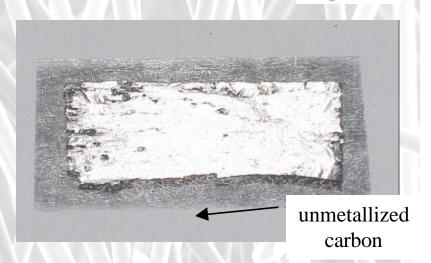
Apr-01 8

Energy Science Laboratories, Inc.
Materials & Processing

Applications

- 'Hovering Earth Platform' @ ~60-100 km
 - Communications; Reconnaissance
 - $-5g/m^2 = 5,000 \text{ kg/km}^2$; Solar thermal = 1 GW
- Low-cost environment for Gossamer test
 - Flight dynamics and control
 - Field gossamer instrumentation and communications
- Launching Gossamer Spacecraft from Earth
- Planetary exploration (winds? dust devils?)

Apr-01 9



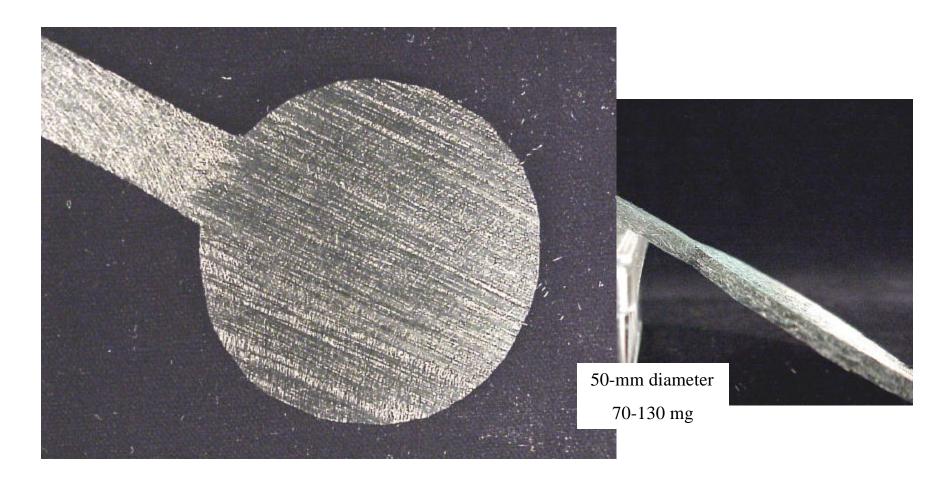
Carbon-Carbon Sails

- 3D carbon fiber microtruss structure
 - Lightweight, stiff, bendable
 - High temperature (2500 K)
 - Elastic self-deployment
- Carbon films integrated
 - Thin, flexible, smooth
 - Metallize with Ag, Mo
 - High reflectivity (front)
 - High emissivity (back)

Carbon-Carbon Sail (4-g/m² film on 7-g/m² microtruss)

Reflective Laser Sails

- Carbon membrane
 - Areal mass 3 g/m²
 - Th. expansion 3 e-6/K
- Carbon bonding to microtruss at high-T
- Molybdenum sputter coating ~50 nm



Metallized Laser Flight Sails

Reinforced Carbon Microtruss

